Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection ¬リニ

نویسندگان

  • George Mavrotas
  • José Rui Figueira
  • Eleftherios Siskos
چکیده

Multi-objective combinatorial optimization (MOCO) problems, apart from being notoriously difficult and complex to solve in reasonable computational time, they also exhibit high levels of instability in their results in case of uncertainty, which often deviate far from optimality. In this work we propose an integrated methodology to measure and analyze the robustness of MOCO problems, and more specifically multi-objective integer programming ones, given the imperfect knowledge of their parameters. We propose measures to assess the robustness of each specific Pareto optimal solution (POS), as well as the robustness of the entire Pareto set (PS) as a whole. The approach builds upon a synergy of Monte Carlo simulation and multi-objective optimization, using the augmented ε-constraint method to generate the exact PS for the MOCO problems under examination. The usability of the proposed framework is justified through the identification of the most robust areas of the Pareto front, and the characterization of every POS with a robustness index. This index indicates a degree of certainty that a specific POS sustains its efficiency. The proposed methodology communicates in an illustrative way the robustness information to managers/decision makers and provides themwith an additional supplement/ tool to guide and support their final decision. Numerical examples focusing on a multi-objective knapsack problem and an application to academic capital budgeting problem for project selection, are provided to verify the efficacy and added value of the methodology. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An optimization technique for vendor selection with quantity discounts using Genetic Algorithm

Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...

متن کامل

A MULTI-OBJECTIVE OPTIMIZATION MODEL FOR PROJECT PORTFOLIO SELECTION CONSIDERING AGGREGATE COMPLEXITY: A CASE STUDY

Existing project selection models do not consider the complexity of projects as a selection criterion, while their complexity may prolong the project duration and even result in its failure. In addition, existing models cannot formulate the aggregate complexity of the selected projects. The aggregated complexity is not always equal to summation of complexity of projects because of possible syne...

متن کامل

A NEW MULTI-OBJECTIVE OPTIMIZATION APPROACH FOR SUSTAINABLE PROJECT PORTFOLIO SELECTION: A REALWORLD APPLICATION UNDER INTERVAL-VALUED FUZZY ENVIRONMENT

Organizations need to evaluate project proposals and select the ones that are the most effective in reaching the strategic goals by considering sustainability issue. In order to enhance the effectiveness and the efficiency of project oriented organizations, in this paper a new multi-objective decision making (MODM) approach of sustainable project portfolio selection is proposed which applies in...

متن کامل

Robustness in portfolio optimization based on minimax regret approach

Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...

متن کامل

A Multi-Criteria Analysis Model under an Interval Type-2 Fuzzy Environment with an Application to Production Project Decision Problems

Using Multi-Criteria Decision-Making (MCDM) to solve complicated decisions often includes uncertainty, which could be tackled by utilizing the fuzzy sets theory. Type-2 fuzzy sets consider more uncertainty than type-1 fuzzy sets. These fuzzy sets provide more degrees of freedom to illustrate the uncertainty and fuzziness in real-world production projects. In this paper, a new multi-criteria ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015